- Joined
- May 20, 2015
- Messages
- 3,221
- Age
- 61
- Location
- St. Augustine, FL.
- Gender
- Male
- Religious Affiliation
- Atheist
- Political Affiliation
- Moderate
- Marital Status
- In Relationship
For all real $0<a_i$, where $1\le i\le n$, prove:
$\displaystyle \sum_{k=1}^n\left(a_k^{-2}\right)\ge\sum_{k=1}^n\left(a_k^{2}\right)$
given that:
$\displaystyle \sum_{k=1}^n\left(a_k\right)=n$
$\displaystyle \sum_{k=1}^n\left(a_k^{-2}\right)\ge\sum_{k=1}^n\left(a_k^{2}\right)$
given that:
$\displaystyle \sum_{k=1}^n\left(a_k\right)=n$